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On two-dimensional self -avoiding random walks 

A J Guttmann 
Department of Mathematics, Statistics and Computer Science, University of Newcastle, 
New South Wales, 2308, Australia 

Received 28 June 1983 

Abstract. Following Nienhuis’ exact evaluation of the connective constant of the honey- 
comb lattice self-avoiding walk model, and the exact exponent values he has conjectured, 
we have re-examined the available data on all three regular two-dimensional lattices. In 
the case of the triangular lattice we have additionally corrected and extended the extant 
series. 

We find support for Nienhuis’ value y = 1% for all three lattices, and further find that 
(I = f for all three lattices, as given by Nienhuis’ result v =: and the hyperscaling relation 
d v  = 2 -a. We are unable to  find any consistent evidence of a ‘correction-to-scaling’ 
exponent A ,  < 1 from the walk generating function, though other workers have found such 
an exponent for the mean square end-to-end distance series. We cannot however rule out 
an exponent A, > 1. 

For the connective constants we find p = 2.6381 *0.0002 (square), p = 
4.15075*0.0003 (triangular). We speculate_on the form of the exact result for p, and 
provide- two mnemonics p = 1 +j(9+J3)1’2 = 2.637 990. . . (square) and p = 
3+(2J10-5)”*=4.150 893.. . (triangular). 

1. Introduction 

The recent exact results of Nienhuis (1982) for the connective constant and critical 
exponents of the self-avoiding walk (SAW) problem on the honeycomb lattice have 
prompted an extension and re-examination of available data pertaining to the square 
and triangular lattice SAW problem. As a result we have obtained new, sharper, 
numerical estimates of the connective constant on these lattices, but for a variety of 
reasons to be discussed, we have been unable to find exact results paralleling those of 
Nienhuis, though some possibly exact mnemonics are given. 

A long-standing conjecture (Guttmann and Sykes 1973)’ that the sum of the 
connective constant of the SAW model on the triangular lattice (pT) and the correspond- 
ing quantity on the honeycomb lattice (pH) is exactly 6 ,  is shown to be highly unlikely. 

The generating functions for both the chains and the polygons (which are the 
analogues of the zero-field susceptibility and zero-field free energy respectively) appear 
to have a singularity structure similar to that of the two-dimensional Ising model, that 
is, a singular part plus an analytic component, with the apparent absence of any 
non-analytic ‘correction-to-scaling’ terms corresponding to any ‘correction-to-scaling’ 
exponent A I  < 1 .  This is in surprising contrast to the work of Majid el a1 (1983) and 
Privman (1983a, b) who analysed the mean square end-to-end distance series and 
found firm evidence for a ‘correction-to-scaling’ exponent A,  = 5. 
0305-4470/84/020455 + 14$02.25 0 1984 The Institute of Physics 455 
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The chain and polygon generating functions are defined in the usual manner as 

C(x)=  c c,xn, P ( x ) =  c P f l X f l  

,330 f l 3 O  

where c , ( p , )  is the number of n-step self-avoiding walks (polygons) per site of an 
infinite lattice. To leading asymptotic order c, - p n n g  and p ,  - p n n P  where Nienhuis 
(1982) found ~ ~ = ( 2 + f l ) l / ~ ,  g = - y - l = g  and p = a - m .  In fact, Nienhuis 
studied an N-vector model and obtained p H ( N )  = (2 +J2 I N)'l2, for -2 N 5 2 
which also reproduces the known Ising model result p H ( l )  = J3. Baxter (unpublished) 
has obtained Nienhuis' result for pH by an alternative, and more direct, formulation. 

The elegant simplicity of Nienhuis' result, particularly the N dependence of pH(N), 
initially suggests that similar results may hold for the other regular two-dimensional 
lattices, or that, at the very least, some simple relation such as that produced by the 
Guttmann-Sykes conjecture should hold. 

Unfortunately, all the evidence we have found points away from these conclusions. 
Nienhuis chooses a particular potential, defined by 

exp(-/3V(si, si)) = l + x s i *  s, (1.1) 

where si are N-dimensional vectors located at site i. The usual nearest-neighbour 
interaction produces 

Z ( N )  = E  x'N'k(G) 

for the zero-field partition function of the model on a honeycomb lattice. The sum is 
over the set of all disconnected polygons G with a total of 1 bonds and with weak 
lattice constant k ( G ) .  c is the number of disconnected components. When N = 1, 
(1.2) gives the king model partition function, while Z ( N ) / N  in the limit N +  0 gives 
the polygon generating function. For N = 2, the peculiar O(2) model discussed by 
Domany et a2 (1981) is recovered. 

The significant aspect here is that as N changes, the class of graphs entering the 
sum (1.2) does not change. That is, for the Ising model partition function the contribu- 
tory graphs are just polygons-as for the polygon generating function (PGF). For other 
regular lattices however, such as the square and triangular lattices, an infinite number 
of sets of graphs contribute to the Ising model specific heat but not to the PGF. This 
of course is a consequence of the low coordination number (4 = 3) of the honeycomb 
lattice, and it appears that the model (1.1) is only solvable on that lattice. 

As a consequence, the simple N-dependence obtained by Nienhuis seems likely to 
be a feature of the uniquely low coordination number of the honeycomb lattice. 

In 9 2 we review the existing data for the connective constants on the square and 
triangular lattice. In 9 3 we extend and correct the SAW series on the triangular lattice, 
and analyse the SAW and SAP series. The previously published series on the triangular 
lattice was known to be suspect in the 16th term due to the work of Grassberger 
(1982). We confirm Grassberger's corrected 16th coefficient, find corrections to the 
17th coefficient and add the new 18th coefficient. Section 4 contains a brief discussion 
of our conclusions, while 9 5 contains some speculations as to the exact value of ,U. 

2. Existing analyses 

For many years it was believed that the critical exponent for the two-dimensional SAW 
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problem was g=f=0 .333 ,  so that Nienhuis’ result that g=%=O.34375 came as 
something of a surprise. 

In 1975 Watts quoted unbiased estimates of the pair ( p ,  y )  obtained from a Pad6 
approximant study as (1.8478, 1.342) for the honeycomb lattice, (2.6385, 1.335) for 
the square lattice and (4.1520, 1.330) for the triangular lattice. 

These were in reasonable agreement with the earlier biased ratio estimates of Sykes 
et a1 (1972) who assumed y = $  and estimated p H =  1.8481, ps=2.6385 and p r =  
4.1517 with errors quoted as i l  in the last decimal place. 

In a recent paper Derrida (1981) devised a phenomenological renormalisation 
scheme applicable to the SAW problem on the square lattice, and obtained pus= 
2.638 17*0.0002. This approach makes no assumption about the exponent, and so 
is expected to be a reliable unbiased estimate. At the same time Derrida estimated 
the mean square end-to-end distance exponent v to be 0.7503 * 0.0002, which lies 
outside the exact value of 2 found by Nienhuis, so perhaps the error bounds on pus 
should not be interpreted too rigidly. 

As mentioned in the introduction, Grassberger (1982) obtained c]6 = 
24 497 330 322 while Martin et a1 (1967) give c16 = 24 497 321 682 and ~ 1 7  = 
103 673 881 482. To resolve this discrepancy, a FORTRAN program based on a back- 
tracking algorithm (similar in spirit to that discussed by Grassberger) was written. 
Running for a total of 100 hours on a VAX 11/780 we obtained c16 = 24 497 330 322, 
c I 7  = 103 673 967 882 and c18 = 438 296 739 594. These results confirm Grassberger’s 
coefficient c16, correct the coefficient of c I 7  (the error in which is due solely to the 
incorrect c16, as Sykes’ counting theorem gives our value of ~ 1 7  using the corrected 
c16 and Martin et a1’s value of ~ 1 7 )  and give one new term c18. We have also verified 
the SAP’S up to and including pi7 as previously published (Martin et a1 1967), and add 
one new term, = 24 852 576. To extend the series further would require an 
additional 450 hours on the VAX 11/780 for one extra term, or about 2000 hours 
for two extra terms. While further terms would be highly desirable, it is doubtful, 
given these timings, whether the above method can realistically be used for that 
purpose. After submission of this paper, Majid er a1 (1983) confirmed the new 
coefficient c1 S. 

3. Analysis 

We have analysed the corrected and extended SAW series on the triangular lattice, and 
the existing series on the square and honeycomb lattices. In tables 1 , 2  and 3 we show 
the poles and residues of Pad6 approximants to the logarithmic derivative of the SAW 

series. Table 1 displays results for the honeycomb lattice, and shows a trend that also 
holds for the square lattice results, that of steadily increasing estimates of both the 
pole (which estimates 1/p) and the magnitude of the residue (which estimates y =  
- ( l+g) ) .  By about the 14th row this trend seems to have converged, with the last 
eight estimates lying in the range 1 / ~  =0.541 19*0.000 03 (cf the exact result of 
1/p=O.541 1961. . . )andy=l+g=l .342*0.003(cf the‘exact’resul t  y=1.343 75). 
We have ignored defective approximants in this assessment (see e.g. Gaunt and 
Guttmann (1974) for an expansion of this point). 

Table 2 for the square lattice shows the same increasing trend, but there is no 
evidence that a region of stability has been reached. Ignoring defective approximants, 
the square lattice results have reached (0.379 01, -1.336) and are still increasing. The 
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Table 1. Dlog Pad6 approximants to honeycomb lattice SAW generating function. 

EN- 1 /Nl  [NINI [ N +  1INl 
N Pole (Residue) Pole (Residue) Pole (Residue) 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.546 96 
0.540 68 
0.541 14 
0.540 88 
0.541 07 
0.541 14 
0.541 22 
0.541 17 
0.541 18 
0.541 18 

(- 1.719) 
(-1.319) 
(- 1.338) 
(-1.324) 
(-1.335) 
(- 1.339) 
(-1.345) 
(-1.341) 
(- 1.341) 
(-1.341)t 

0.540 35 
0.541 62 
0.541 02 
0.541 01 
0.541 08 
0.541 00 
0.541 18 
0.541 17 
0.541 18 

(- 1.307) 
(- 1.364) 
(-1.332) 
( - 1.332): 
(-1.336) 
(- 1.3 32) t 
(-1.342) 
(- 1.341) t 
(- 1.341) 

0.542 38 
0.545 43 
0.540 96 
0.541 17 
0.541 11 
0.541 16 
0.541 17 
0.541 18 
0.541 18 

(- 1.4 17) 
(-1.786)t 
(-1.329) 
(- 1.340) t 
( - 1.337) 
(-1.340) 
(-1.341) 
(- 1.342) 
(-1.341)t 

t Pole-present closer to the origin than the displayed physical singularity. 

Table 2. Dlog Pad6 approximants to the square lattice SAW generating function. 

[ N -  UN1 [NINI [ N +  1INl 
N Pole (Residue) Pole (Residue) Pole (Residue) 

5 
6 
7 
8 
9 

10 
11 
12 

0.377 30 
0.371 84 
0.378 82 
0.378 86 
0.378 80 
0.379 17 
0.379 00 
0.378 99 

(-1.2765) 0.377 77 (-1.2881) 0.378 39 (-1.3064) 
(- 1.4353)t 0.378 63 (-1.3149) 0.379 51 (-1.3701) 
(- 1.3232) 0.378 85 (-1.3246) 0.378 86 (-1.3249) 
(-1.3250) 0.378 85 (-1.3245): 0.378 99 (-1.3338) 
(- 1.3224) t 0.378 97 (-1.3328) 0.378 98 (-1.3337)t 
(- 1.3564) 0.379 02 (-1.3375)t 0.379 01 (-1.3361) 
(-1.3350) 0.379 01 (-1.3356) 0.379 01 (-1.3359)t 
(- 1.3337) t 

t Pole-present closer to origin than the displayed physical singularity. 

Table 3. Dlog Pad6 approximants to the triangular lattice SAW generating function. 

[ N -  1INl [NINI [ N +  1INl 
N Pole (Residue) Pole (Residue) Pole (Residue) 

~~ 

4 0.240 17 (-1.2926) 0.240 29 (-1.2971) 0.240 52 (-1.3062) 
5 0.239 93 (-1.2880)t 0.24061 (-1.3109) 0.241 44 (-1.4263) 
6 0.240 70 (-1.3169) 0.240 79 (-1.3234) 0.240 83 (-1.3276) 

0.240 87 (-1.3318) 0.240 89 (-1.3345) 7 0.240 90 (-1.3357) 
0.240 88 (-1.3329) 0.240 88 (-1.3333) 0.240 88 (-1.3334) 

9 0.240 88 (-1.3336) 
8 

~~ 

t Pole-present closer to the origin than the displayed physical singularity. 

triangular lattice results do, however, seem to have settled down to the values (0.240 88, 
- 1.333). 

Looking at these results, it is easy to see why the earlier estimate of y = :  was 
made, but a more systematic view, coupled with the hindsight of Nienhuis’ exact results, 
clearly indicates a higher value of y for both the square and honeycomb lattices, though 
the triangular lattice does not conform to this observation. 
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Discrepancies between series estimates of critical exponents and those obtained 
from renormalisation group studies-particularly for three-dimensional systems-have 
generally been resolved by allowing for confluent singularities. It seems plausible that 
such a mechanism is responsible for the slow convergence of the Pad6 estimates of 
the square and triangular lattices. We have exhaustively investigated this possibility, 
and have found no consistent evidence for a confluent singularity. The methods used 
included the Baker-Hunter transformation method (1973) using a range of values of 

including our central estimates, the method introduced by Saul et a1 (1975) in which 
one fits to the assumed confluent form, the method of Rehr et a1 (1980) based on 
differential approximants, and the method introduced by Roskies (1981) and gen- 
eralised by Adler et al (1982). In this last method, a transformation is made so that 
if the old expansion variable is x, the new variable is 

y = 1 - ( 1  - x /  xc)A (3.1)  

where x, is the critical point, and in the new variable it is at y = yc = 1. If the function 
under investigation behaves like 

F ( x )  - ( 1  -x/x,)-”[al+ a l ( l  -x/x,)*‘+ b2(1-x/xc) +. . .I (3.2) 

f ( y ) = F ( ~ ( y ) ) - ( l - y ) - ~ ’ * [ b ~ + ~ , ( l - y ) ~ ~ ’ ~ + 6 2 ( 1  - y ) l ” + .  . .I. (3.3) 

then after transformation we have 

If A is chosen equal to A , ,  the non-analytic correction-to-scaling term ( 1  - x / x , ) ~ I  
becomes analytic in y, being transformed to a , ( l  - y). Of course, the analytic term 
b2( 1 - x/x,) now becomes b2( 1 - y)”* which is non-analytic unless A = 1/  n, where n 
is an integer. Even if A is not the reciprocal of an integer and A < 1, then the effect 
of the transformation is still to reduce the effect of the term b2(1 -x/x,),  changing it 
to b2( 1 - y)”*. However, it is clear that this transformation needs to be used with 
considerable care with values of A >  1.  Further, if A , / A  = m > 1 the original non- 
analytic term in F becomes an analytic term in f. This is the source of the resonances 
found by Privman (1983a) and discussed at greater length by him. 

After transformation, the critical exponent y is found by evaluating suitably formed 
Pad6 approximants to the logarithmic derivative of f. That is, 

A(1-Y)(d/dY){logf(Y)}l,=l- r+0[(1 - y P ’ ” I .  (3.4) 

We have applied this method to the honeycomb lattice SAW series, using the exact 
value for x, = l /pH = ( 2 +  J2)-’” found by Nienhuis and a range of values of A. For 
the purpose of comparison, we have performed similar calculations on the honeycomb 
lattice Ising model series, for which x, = 1/43,  y = and A ,  is known to be 1. For 
each value of A we have estimated y by forming the mean of the last 15 diagonal and 
off-diagonal Pad6 approximants, and quoting an error of one standard deviation. In 
many cases, we have rejected one of the 15 entries in forming the mean, as this isolated 
‘outlier’ differed from the mean by a factor of 5 or 10 more than did the remaining 
14 entries. 

The results of this calculation are shown in table 4, where we have also shown the 
effect of a slight variation in the critical point. 

Firstly, observe that the Ising model results point unerringly to the known exact 
results. As A-, 1 ,  the estimates of y approach the exact value, and the standard 
deviation monotonically decreases. Further, at A = 1 ,  variations of the critical point 
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Table 4. Variation of critical exponent y with the parameter A (equation (3.1)) for the 
honeycomb lattice SAW and king models. 

Self-avoiding walks king model 
p = 1.847 759 . .  . l /x ,=p=1.7320508 

A y = 1.343 75 y =  1.7500, A I  = 1.0 

0.5 
0.6 
0.7 
0.8 
0.9 
0.93 
0.96 
1.00 
1.20 

1.3392*0.0050 
1.3439i0.0023 
1.3457 * 0.0017 
1.3454 * 0.0017 
1.3454*0.0003 
1.3445*0.0001 
1.3439i0.0001 
1.3432 * 0.0005 
1.3400 * 0.0031 

1.7464*0.0084 
1.7533i0.0068 
1.7545 i0 .0045 
1.7544*0.0008 
1.7528*0.0005 
1.7 520 f 0.000 3 
1.75 11 * 0.0002 
1.74981 0.0002 
1.7438*0.0037 

1.0 p = 1.847 65 p=1.73195 
y =  1.3470i0.0031 y = 1.7510,*0.0020 

1.0 p = 1.847 85 p = 1.732 15 
y = 1.3408*0.0002 y =  1.7451 i0.0019 

away from the exact value cause substantial changes in the estimates of y, and a tenfold 
increase in the error estimate. 

For the SAW series, the results are less clear. As A increases, estimates of y at first 
increase, then decrease. The error decreases with increasing A, reaching a minimum 
around A = 0.95. Even at A = 1 however, the error is quite small, and the estimate of 
y is quite close to Nienhuis’ exact value of y = 1.343 75. There is insufficient evidence 
to conclude the presence of a confluent singularity for the SAW generating function 
with A # 1. Even if such a term were present, with a value around A = 0.95, as suggested 
by the very small error in that vicinity, its effect on the series is likely to be comparable 
to that of the analytic correction terms, and the other singularities believed to lie on 
the circle of convergence 1x1 = x, = l / p  (Guttmann and Whittington 1978). Note also 
that a small variation in the critical point changes the estimate of y substantially, but 
that the associated error increases as x, is increased while decreasing as x, is decreased. 
Thus we see that this series is clearly less well behaved than its Ising counterpart. We 
nevertheless conclude that: (a) at the exact critical point the exponent estimates agree 
with Nienhuis’ result that y = l# exactly; (b) there is no compelling evidence for the 
presence of a confluent singularity with an exponent different from 1, though there is 
weak evidence for a confluent exponent just less than 1. After completing this section, 
we received a letter by Adler (1983), who analyses the honeycomb lattice SAW series 
similarly and also finds A,  = 0.93, as well as two additional correction-to-scaling 
exponents around A2 = 1.25 and A3 = 1.55. We believe that this inteTpretation is 
pushing the method beyond its region of applicability. 

Turning now to the square lattice, the critical point is not known exactly. Table 2 
implies 1/p > 0.379 01, and so we have formed Pad6 approximants as above for a 
range of values of p, with A = 1. In order to investigate further the possibility that 
there is a confluent singularity at a value of A around 0.95, we also estimated y for 
A=0.90 and 0.95. It has been estimated from the mean of the last 11 PadC 
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approximants, the error quoted being one standard deviation. As for the honeycomb 
results, one entry was generally rejected as an ‘outlier’. 

The results are summarised in table 5. Unlike the honeycomb lattice results there 
is no evidence to suggest a confluent singularity around A = 0.95 for the square lattice. 
In the absence of a confluent singularity, the results for A = 1 give the ‘correct’ values 
of y = 1.343 75 at p = 2.637 99. Like the honeycomb lattice results, the error in y is 
not minimised at this value of p, but at a slightly higher value which does not, however, 
give the correct value for the exponent y. For this lattice too, the Ising model series 
(of similar length) is much better behaved in that the error in y is minimised at the 
correct value of x,, and variations in x, of *l part in 40 000 produce a 10- to 50-fold 
increase in the standard deviation of the estimate of y. We conclude that p = 
2.6380*0.0003, subject to the assumptions that y = 1.343 75 and A, = 1. 

The results of a similar analysis of the 18-term triangular lattice series is given in 
table 6. An additional column corresponding to A, = 0.84 is also given, because it was 
found that estimates of y were very stable there. While this might point to a confluent 
exponent with a value around A = 0.84, we consider this unlikely as there is no evidence 
of such a value for the other two lattices, and such exponents are expected to be 
universal. Fortunately, however, even if such a confluent singularity were present it 
would not affect our estimate of the connective constant p significantly, as the estimates 
of y with A I  =0.84 are very close to those with A l  = 1.0. The estimate p = 
4.1507 f 0.0004 thus encompasses both possibilities. 

Before analysing these same series by ratio techniques, we turn to the SAP series, 
which are analogues of the free energy. Nienhuis’ result v =: gives a = via the scaling 
relation dv  = 2 - a. Thus we write the free energy as 

(3.5) F ( X )  - Fn(x)  + ( 1 - X /  x c ) 2 - a [ f o  +fl(1-  X /  x,)*I + . . .I 

Table 5. Variation of critical exponent y with the parameter A (equation (3.1)) and the 
connective constant p for the square lattice SAW series. 

/* A = 0.9 A = 0.95 A =  1.00 

2.637 84 1.34981 0.0019 1.3484 i 0.0018 1.3468 i 0.0018 
2.637 99 1.3460*0.0009 1.3449*0.0010 1.3437 *0.0011 
2.638 10 1.3436i0.0005 1.3424 * 0.0009 1.3417 * 0.0007 
2.638 20 1.3416* 0.0003 1.3407 1 0.0003 1.3399*00.0004 
2.638 30 1.33921 0.0002 1.3390*0.0002 1.3383 * 0.0002 
2.638 40 1.3381 *0.0002 1.3374io.0002 1.3367 iO.0001 

Table 6. Variation of critical exponent y with the parameter A (equation (3.1)) and the 
connective constant p for the triangular lattice SAW series. 

- 
P A = 0.84 A = 0.90 A = 0.95 A = 1.000 

4.150 41 1.3461 *0.0010 1.3434i0.0020 1.3371 k0.0097 1.3471 *0.0091 

4.150 65 1.3435 i 0.0005 1.34 15 * 0.0010 1.3375 i0 .0053 1.3429 *0.0055 
4.150 755 1.3424*0.0004 1.3407*0.0007 1.3375 i0.0037 1.3412 * 0.0042 

4.150 55 1.3446i0.0007 1.3423 * 0.0013 1.3374*0.0070 1.3445 10.0068 

4.150 85 1.3415 i0.0004 1.3399 f 0.0005 1.3374*0.0025 1.33981 0.0032 
4.150 95 1.3404 * 0.0004 1.3390* 0.0005 1.3371 10.0016 1.3384*0.0023 
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where Fo(x)  is a background term analytic near x,, while fo, f, etc are constants arising 
in the expansion of the singular part of the free energy. AI is, as before, the correction- 
to-scaling exponent. Consider now the special case of A1 - a = integer. Then the 
‘confluent’ term f l (  1 - X / X ~ ) ~ - ~ + * ~ ,  being analytic, would merge with the background 
analytic term. Or, more pertinently, with 

(3.6) 

where both Fo and F ,  are analytic near xc,  and 0 < a < 1, then if A l  3 a the method 
of analysis we have used would suggest an apparent confluent exponent A I  = a. In this 
case, with Q = i, the series might therefore be expected to display an apparent confluent 
exponent of A = f ,  and this is precisely what is observed. 

In order to analyse these series by the Pad6 method we must first differentiate 
them twice (thus converting them to specific heat analogues) in order to get a divergent 
singularity, as the Pad6 method cannot resolve non-factorisable zeros (see Gaunt and 
Guttmann 1974). Another point is that for the loose-packed lattices the SAP generating 
function is a power series in u2 ,  so only half the number of coefficients are available 
for this series compared with the SAW series. Thus for the honeycomb lattice the 
specific heat series has only 13 non-zero coefficients. Analysing this series as for the 
walk series, we show in table 7 the average of the last six diagonal and off-diagonal 
Pad6 approximants with a quoted error of one standard deviation. The exact critical 
point l / p  = (2+42)-’” has been used. The correct value of a ( f )  is given for a range 
of values of A around 0.5-0.55, in reasonable agreement with the expected value of 

F (  x )  - Fo( x )  + ( 1 - x /  x,) 2-nF1 ( x )  

A = Q = ~ ,  

Table 7. Estimates of the ‘specific-heat’ exponent (I obtained by averaging the last six 
(honeycomb) or eight (square) Pad6 approximants to the transformed self-avoiding- 
polygon series. 

Honeycomb lattice Square lattice 
p = 1.847 759, , . p =2.638 14 

A a a 

0.3 0.21 7 * 0.035 0.3265 0.252 
0.4 0.367 f 0.023 0.457* 0.070 
0.45 0.427 x 0.026 0.463 * 0.020 
0.50 0.473 f 0.029 0.502 * 0.003 
0.55 0.524 f 0.035 O.SO0 * 0.074 
0.60 0.564*0.035 0.553 f0.021 

For the square lattice we are in possession of a much longer series, due to the work 
of Enting (1980), whose finite lattice calculation gives the series to powers of x3’ ,  
compared with x24 for the SAW series. In the specific heat, 16 non-zero coefficients 
remain, and an analysis of this series identical to the analysis of the honeycomb lattice 
series above (though with a non-exact value of p )  produced the results shown in the 
third column of table 7. The decrease in the error in the estimate of a as A + $  is 
quite dramatic, and shows the sort of improvement that can be expected from longer 
series. 

Accepting the value A = 0.5-which we emphasise corresponds to an additive, 
analytic term rather than a square root correction-to-scaling exponent-we show in 
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table 8 the variation in estimates of a obtained by varying the connective constant p 
over the same range as for the SAW series. Table 8 also displays corresponding results 
for the triangular lattice, where the series is known up to the same length as the SAW 

series, that is, 18 terms. Thus while the triangular lattice SAP series is as long as the 
square lattice SAP series when measured in terms of coefficients, it represents sig- 
nificantly less configurational information, corresponding as it does to only 18-step 
polygons, compared with 38-step polygons on the square lattice. Among the three 
lattices, it is the honeycomb lattice that gives the most badly behaved SAP series- 
reflecting the small number of polygons embeddable on this lattice up to order v34.  
At the correct value of p and with A = 0 . 5 ,  the honeycomb lattice series gives a = 
0.473 * 0.029-just consistent with the 'exact' value of $. For the square lattice, the 
requirement that a = $ gives p = 2.6382* 0.0002, while for the triangular lattice we 
estimate similarly p = 4.1509 f 0.0005. 

Table 8. Variation of specific heat exponent n with connective constant 
and triangular lattice. 

for the square 

Square lattice 
P CI 

Triangular lattice 
P a 

2.637 84 0.5101 i 0.0036 
2.637 99 0.5061 i0.0019 
2.638 10 0.5030 i 0.0024 
2.638 20 0.4998 f 0.0035 
2.638 30 0.4957 i 0.0062 
2.638 40 0.4890i0.0165 

4.15041 
4.150 58 
4.150 65 
4.150 755 
4.150 80 
4.150 90 
4.151 00 
4.151 10 

0.5050 * 0.0075 
0.5034*0.0077 
0.5026 i 0.0078 
0.5017 f 0.0079 
0.5013 i 0.0080 
0.5004*0.0081 
0.4994 i 0.0082 
0.4984 f 0.0083 

Turning now to ratio type methods, we have repeated the analysis of Sykes et a1 
(1972) for the square and triangular lattices with the following differences. (i) We 
have used the exponent value y = 1% rather than 2; (ii) we have used the extended 
and corrected triangular lattice SAW series; and (iii) for the triangular lattice we have 
calculated an additional column of extrapolants. 

For the triangular lattice we assume that 

C ( x ) = C  c,xn -(l-px)-g-lQ(X)+T(x) (3.7) 
where Q and * are regular in the disc Ipxl s 1, while for the square lattice we assume 
that 

(3.8) 
where A, B and D are regular in the disc IpxJ S I .  Further, we assume that g = 3 
and h=-;,  as discussed by Sykes et al. The form of these equations thus tacitly 
assumes the absence of confluent singularities. For both lattices we investigate the 
sequences {p,, IP,, = (nc,/c,...l)/(n+g)}. For the triangular lattice we form sequences 
{pul,,,} and {p2. , }  corresponding to solutions of P,, = p,. ,{l+ a /n2}  and pn = 
p2,,{l + b / n 2 +  c/n3} obtained from successive pairs or triples of &'S. For the square 
lattice we form sequences {p , , , , } ,  {p2.,,} and {p3,,,} corresponding to solutions of 
P n = p l , , , { l + a / n 2 } ,  P n = p z , n { l + ( - l ) n b / n e }  with f 3 = g - h  and p n =  
p3,'{1 +c /n2+( - l )hd /ne}  where successive alternate values of p,, are used. 

C(X) =C C,X' - A(x) ( l  - p ~ ) - ~ - '  + B(x)(l + p ~ ) - ~ - ' +  D ( x )  
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The results are shown in tables 9 and 10. In table 9 we see the triangular lattice 
results. The estimators {K , ,~ }  imply p 3 4.1505 while the { F ~ , ~ }  sequence is quite 
stable, and implies p = 4.150 75 * 0.0002. 

In table 10 the estimators { P ~ , ~ }  imply 2.6379 < p < 2.6383 while the estimators 
{ P ~ , ~ }  imply p = 2.638 17, a value that is supported by the combined estimators { P ~ , ~ } .  

Combining all analyses reported, we conclude 

p (triangular) =4.150 75*0.0003, p (square) = 2.6381 *0.0002. (3.9) 
The sum p (triangular) + p (honeycomb) = 5.9985 * 0.0003 would seem to rule out 
the conjecture that this sum is precisely 6. 

Table 9. Generalised ratio analysis of triangular SAW series. Each column should converge 
to p. 

n P" W I J l  P 2 . n  

4. Discussion 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4.144 46 
4.145 37 
4.14607 
4.146 66 
4.147 14 
4.147 54 
4.147 88 
4.148 17 
4.148 42 

4.148 88 
4.149 75 
4.149 75 
4.15002 
4.150 17 
4.15026 
4.150 36 
4.15042 
4.15047 

4.149 39 
4.152 37 
4.149 78 
4.151 01 
4.150 74 
4.15069 
4.150 79 
4.150 74 
4.150 76 

Table 10. Generalised ratio analysis of square lattice SAW series. Each column should 
converge to p. 

n P" Fl," P 2 . n  P 3 . n  

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2.642 99 
2.629 09 
2.641 82 
2.631 09 
2.641 05 
2.632 48 
2.640 50 
2.633 50 
2.640 10 
2.634 26 
2.639 80 
2.634 84 

2.637 79 
2.637 72 
2.638 28 
2.637 62 
2.638 34 
2.637 74 
2.638 31 
2.637 82 
2.638 30 
2.637 87 
2.638 29 
2.637 91 

2.637 27 
2.638 57 
2.637 93 
2.638 25 
2.638 08 
2.638 24 
2.638 10 
2.638 23 
2.638 13 
2.638 21 
2.638 15 
2.638 20 

2.637 81 
2.637 75 
2.638 00 
2.637 94 
2.637 99 
2.638 03 
2.638 03 
2.638 06 
2.638 07 
2.638 08 
2.638 09 
2.638 10 

Our principal results are the estimates (3.9) above. We find strong evidence to support 
Nienhuis' result that y = 1$, and that a = 4 which follows from the hyperscaling relation 
dv = 2 - cy and Nienhuis' result that v = i. 

We find no consistent evidence for the presence of a confluent singularity with 
exponent A ,  < 1. Our methods cannot reliably detect confluent exponents A ,  > 1, 
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though these have been predicted both by E expansions, where Le Guillou and 
Zinn-Justin (1980) gave A l  = 1.15, and by Monte Carlo calculations (Havlin and 
Ben-Avraham 1983) as A I  = 1.21t0.1. In previous work, Grassberger (1982) also 
reports the absence of any detectable confluent singularity with A1 < 1. Nienhuis (1982) 
obtains A ,  = 3, though the status of this exponent is not clear. Most recently, Privman 
(1983b) estimated bl =0.65 10.08 using both series analysis and a finite-size scaling 
renormalisation technique, while Adler (1983) reports A l  = 0.93 for the honeycomb 
lattice data, as discussed in 0 3, and Majid er al (1983) find A l  < 1 in their analysis of 
the mean square end-to-end distance series. 

Our analysis cannot comment on the estimates of A l  > 1. We find no evidence of 
a universal exponent A ,  < 1, though it follows from renormalisation group theory that 
if such a singularity is present in the mean square end-to-end distance series, it should 
also be present in the SAW generating function. 

It seems pertinent that the two-dimensional Ising model has no correction-to-scaling 
exponent A I  < 1 (Aharony and Fisher 1980), and our series analysis suggests a similar 
conclusion for the two-dimensional SAW generating function series. On the other hand, 
Privman (private communication) has discussed the possibility of a number of back- 
ground terms combining together to give a large number of distinct ‘correction’ 
exponents, making the leading correction exponent hard to detect, and also providing 
a plausible explanation for the apparent exponent value y = $ found for the triangular 
lattice. 

5. Speculation 

In this section we speculate on some possibly exact values of the connective constant 
of the square and triangular lattice SAW models. 

For the king model we write v = 1/ U, = l / tanh( J /  kT,) as the analogue of the SAW 

connective constant p. The following exact results are well known: 

v(H) = 43, honeycomb, 

v(K) =t( l  +&+m), KagomC, 

V ( S )  = 1 + JZ, square, 

V(T) = 2 + J3, triangular. 

Note that the square and triangular results are of a more complex form than the 
honeycomb result. That is, they are not just square roots. Nevertheless, the honeycomb 
square and triangular results are connected by Onsager’s relation gd(2KJ = rr/q where 
gd is the Gudermanian function gd(x) = tan-‘(sinh x ) ,  4 is the coordination number 
of the lattice and K ,  = J /  kT,. This relation can be rewritten 1/ v = tan(rr/2q). The 
KagomC lattice, being a non-regular lattice, is not part of this pattern. Another feature 
of (5.1) is that all three regular lattices have critical points v given by the solution of 
quadratic equations with integer coefficients, while the KagomC lattice v is given by 
the solution of a quartic equation with integer coefficients. 

We have 

v( H)2 - 3 = 0, v(s )2-2v(s ) -1  =o ,  
(5.2) 

v(T)’ - 4 v(T) + 1 = 0, ~ ( K ) ~ - 2 v ( K ) ~ - 2 v ( K ) +  1 = O .  
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For the honeycomb lattice SAW series, the corresponding result is p ( H )  = (2+ J2)”’, 
which satisfies the quartic equation 

p(H)“ -4p(H) ’+2 = 0. (5.3) 

Arguing in analogy with the Ising model results, it seems reasonable to speculate that 
p(S)  and p(T) are also given by the solution of quartic equations with integer 
coefficients. We mention in passing that there are no solutions of the form p = 
( a  +Jb)”’ for reasonable integer values of a and b that give our estimates (3.9) for 
the square and triangular lattices. 

A systematic search for solutions of quartic equations with (a) integer coefficients 
and (b) solutions of the form 

+[a * Jb+ J a ]  (5.4) 

was undertaken, for reasonable integral values of a, b, c, d. While (5.4) is not the 
most general form for the solution of a quartic, it seemed reasonable in view of the 
essential simplicity of other results to assume that no more complex form would prevail. 
Pragmatically, a search using the most general form for the solution of a quartic would 
have been computationally unfeasible. As it was, we generated about 2 X l o 7  distinct 
quartics, and found only ten likely contenders. 

For the triangular lattice we find six possible contenders: 

(i) p = - 3 + J ? + J 1 5 + 2 n = 4 . 1 5 0 3 6 0  . . .  , 
(ii) ~ = - 2 + J 3 5 + 2 a = 4 . 1 5 0 4 8 1 . .  . , 

which correspond to integer coefficient quartics with no particularly compelling feature. 
We note that result (5.5) (iii) is closest to the series estimate, though (iv) and (v) are 
almost as close. 

For the square lattice, the only plausible solutions we found were: 

(i) 
(ii) p = l + J 6 - J i T = 2 . 6 3 8  101.. . , 
(iii) p=411+JT-1=2.638 1 4 0 . .  . , 

p = $ [ 2 + J 9 + 8 ] = 2 . 6 3 7  9 9 0 . .  . , 

(iv) p = $ [ J 1 3 + 2 f i + l ] = 2 . 6 3 8  4 2 8 . .  . . (5.6) 

Solution (ii) lies closest to the estimated value (3.9), but coaains an unlikely looking 
411. (It is amusing to note, however, that the surd 11 +5J5 arises in Baxter’s exact 
solution of the hard hexagon problem.) Solution (i) looks the most likely from the 
point gf view of square roots of small numbers. The Ising model solutions contain 
only 42’s and J3’s, while the honeycomb SAW result contains a J2.  This suggests that, 
other things being equal, it is reasonable to h o o s e  a solution for the SAW model on 
the other two lattices that also contains only J2’s and J3’s. For this reason we consider 
solution (i) slightly more likely than the other two. 
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One way to immeasurably strengthen our confidence in the correctness of these 
results would be to find some connection between the results on the three lattices 
paralleling the result U = l / tan( 7r/2q) that holds for the Ising model. To date we have 
been unable to find such a connection. However, for ordinary random walks, the 
parameter U = q - l zn te rs  the equation for the connective constant. Nienhuis’ exact 
result p(H) = (2 + J 2 ) ” 2  contains h = JU which arises from trigonometric functions 
with argument ( T / ~ u ) .  For the square and triangular lattices, ( 7 r / 2 ~ )  = n-/6_and 7r/ 10 
respectively. Tri onometric functions of these arguments contain factors J 3  and, for 

of distinguishing between the possible results ( 5 . 5 )  and (5.6), and suggest (5.5)(iv) for 
the triangular lattice and (5.6)(i) for the square lattice. 

n/10, h and $. 5 These highly speculative considerations provide a plausible means 

In summary then we find that 

p = 1 + $ / 9 + f i = 2 . 6 3 7 9 9 0  . . .  (square), 

p = 3+\ /2J i6 -5  =4.150 8 9 3 . .  . (triangular), 
(5.7) 

are at least useful mnemonics. 
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